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INTRODUCTION

Management of renewable biological resources involves challenges related to prediction, optimization,
and appropriate evaluation of their up�to�date state and reproduction ability. Despite a great number of
works on optimal choice and control in ecological problems, striving for optimality entails significant risks
in practice. In this work, we consider nonlinear phenomena associated with specific features of reproduc�
tion of biological populations and leading to negative consequences when their use is optimized to get
maximum profit. In some cases, principles of optimal control theory used to study application models
contradict other theoretical outcomes resulted from studying dynamic chaos. Once the controlled system
reaches certain points in the parameter space, its dynamics can undergo a rather wide range of qualitative
changes.

We describe one of these critical, previously overlooked changes associated with boundaries of basins
of attraction. Analysis of the reasons of degradation of Caspian Sea sturgeon populations demonstrates the
risk that arises once a complex ecological system is controlled under insufficient knowledge on the plant
system properties and nonlinear nature of the processes.

1. THE PROBLEM OF ECOLOGICAL PROCESS SIMULATION

At the first stage of its development, the new scientific discipline borrowed methods of mathematical
ecology from classical mechanics. Vito Volterra tried to apply the mathematical apparatus of integro�dif�
ferential equations he worked out within the elastic theory to interaction of abstract competing popula�
tions [1]. However, his theory could not analyze any true statistical observation data since they were not
available at that time. Its further development was reduced to modifying the terms in the right�hand sides
of systems of ordinary differential equations. A number of significant factors were left aside the evolving
methodology. A great number of complex systems and processes experience large�scale changes in the
course of their development, which makes it difficult to describe their dynamics using ordinary differential
equations with smooth right�hand sides.

Discrete dynamic systems are becoming the main mathematical technique applied in computer simu�
lation of dynamics of real�world population processes. In many cases, it seems reasonable to represent
natural processes by algorithmic models based on difference equations and matrices due to peculiarities
of ecosystem life�cycle. Simulating algorithms used in such works include functional dependences and
conditional operators of a programming language that impose restrictions and specify conditions for par�
ticular functional dependencies to be chosen. G. Paulic [2] who used FORTRAN and V.V. Menshutkin
who implemented the simulating algorithms on ALGOL�60 were the first to use computers in ecological
research.
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Among other objectives, simulation is to provide the basis for prediction. We consider phenomena that
result in theoretical impossibility of long�term prediction and accompany the research of nonlinear mod�
els of how biological processes develop. Simulating algorithms frequently use functional dependencies
(actually they act as an evolution operator of the dynamic system) that can lead to topologically non�
equivalent phase portraits to formalize critical cause–effect relations. However, there are also negative
consequences caused by a number of nonlinear effects that have nothing to do with bifurcations of attrac�
tors associated with changes of values of model parameters.

2. DYNAMIC CHAOS IN MODELS OF DYNAMICS OF BIOLOGICAL PROCESSES

Involved in simulation in different fields, discrete dynamic systems are especially widely yet frequently
unsuccessfully applied in mathematical description of biological processes.

W. Ricker [3] developed a theory that became widely known and is generally referred to as stock�
recruitment in publications. The theory explains the complex nature of the chain of relations accompa�
nying the entire process of fish population reproduction. Mortality in early ontogenesis of fish is high and
controlled by natural factors as well as factors that depend on the initial spawning stock density. It can be
clear cannibalism, predators reacting to large amounts of food, or mortality caused by starvation when
food is limited. We carried out a number of laboratory experiments that demonstrated deceleration of
growth of fish population given the high density.

Ricker [3] was first to propose mathematical formalization of the nonmonotonic dependence of
recruitment on stock R = f(S). However, along with his numerous followers, he did not consider this model
in terms of theory of dynamic systems. A discrete dynamic system that describes population dynamics as
functional iterations using the Ricker model Rj + 1 = aRjexp(–bRj) may yield topologically non�equivalent
phase portraits. For the control parameter a successively increased to reach the bifurcation value, the
dynamic system represented as the semigroup of iterations {ψ(j)}j ≥ 0, where R0,R1, R2, … is a series of points
that describe evolution of the system and are given by the condition Rj + 1 = ψ(Rj) for all j ≥ 0, has the global
attractor. When the transit mode ends, the system moves into the stable equilibrium state with the station�
ary point R*, with the whole phase space being the basin of attraction Ω for R* (true for attractors for any
a > 0 yet biologically significant only for a > 1). J. Milnor [4] considered different interpretations of the
concept of attractor and analyzed examples to come up with a generalized definition. In what follows, we
use the Milnor’s definition to study effects associated with changes of attractors.

When the derivative at the fixed point no longer meets the stability criterion, the system undergoes
metamorphosis. For dynamic systems of the type involved, it happens when the condition |ψ'(R*)| < 1 is
not met for the first derivative, which follows from the Grobman�Hartman theorem [5]. The mapping
acquires two new cyclic points ψn(R*) = ψn + 2(R*) that are the fixed points for the second iteration ψ2(R).
When the control parameter changes within the range a > e2, we move to chaos through the infinite cas�
cade of period�doubling bifurcations (each time for ψ2n'(R*) = –1). The interval of the value of the control
parameter between two sequential bifurcations reduces rapidly as the cycle period grows. Once it passes
through the cascade of doublings, the trajectory is attracted to the attractor that differs from the finite
union of smooth submanifolds of the phase space and is called a “strange attractor”. A chaotic mode
emerges (Fig. 1); dynamics of changes looks stochastic. The main but not the only property of chaos is its
sensitive dependence on initial conditions—there is an exponential recession of close trajectories. For
tangent bifurcations, the chaotic range of the values a is broken by windows of periodicity with stable
cycles of different periods. It includes the cycle of period 3 that emerges exactly according to the
A.N. Sharkovskii theorem. The theorem proved before the concept of strange chaotic attractor was pro�
posed and the very term “chaos” was introduced defines co�existence of cycles of different periods in the
mapping. Three acts as the final number in the special Sharkovskii order [6]; if there is a cycle of period 3
in the dynamic system, there are also cycles of all other possible periods.

The order of changes in the behavior of the system trajectory represented as the doubling bifurcation
cascade for successively increased parameter is known as the M. Feigenbaum scenario. The scenario is
realized in nonlinear unimodal maps with the extremum close to quadratic xn + 1 = λsin(πxn), xn + 1 =
4λxn(1 – xn). Two universal constants—the Feigenbaum numbers [7] – characterize the rate of moving to
chaos when the cycle period becomes infinite. The value of Schwartz derivative

(2.1)

acts as the criterion of moving to chaos through the bifurcation cascade in the mappings of the type
involved.
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This value (generally called Schwartzian) possesses an important property, viz. it preserves the sign as
the function ψ(ψ(…ψ(R)…)) ≡ ψn(R) is calculated during n iterations. The strictly negative value of the
differential Schwartz invariant Sψ < 0 is the condition for the Feigenbaum scenario to be realized in the
unimodal mapping.

It is interesting that a similar scenario of moving to chaos is established for another model within the
stock�recruitment theory proposed by J. Sheperd. While in the Ricker model this happens when the
parameter а that characterizes the system self�recovery rate is increased, the Sheperd model had the bifur�
cation parameter introduced to take into account the influence of environmental resistance factors that
makes recovery slow down. The two models proposed in the same subject field turn out to have opposite
behavior interpretations. Application of nonlinear dynamics methods has shown that the models similar
in the form of dependence are mutually contradictory.

3. STRUCTURAL CHANGES OF STRANGE ATTRACTORS OF DISCRETE MAPPINGS

Aperiodic motion of the trajectory points as the property of some one�dimensional unimodal maps was
first mentioned in the course of analyzing the results of R. May’s research in computer simulation of bio�
logical problems. Further studies have shown that application of this mathematical apparatus is connected
with a whole number of other nonlinear phenomena. Only part of them have been fully studied up to now,
nonlinear dynamics that employs computational methods being one of the most rapidly developing disci�
pline of modern mathematics.

Several critical effects used to evaluate adequacy of the models proposed in different disciplines are
connected with possible windows of periodicity that emerge after tangent bifurcations. For such bifurca�
tion, the derivative of the n�th iteration at new fixed points is ψn'(R*) = 1. The cycle of period 3 is formed
when the third iteration ψ3(R) of the Ricker function for a = 22.54 gets six new fixed points, which are
intersections with the bisectrix Rn = Rn + 1, with three of them forming a stable cycle and the other three,
unstable (Fig. 2).

Unlike the doubling bifurcation that changes only the attractor, the tangent bifurcation results in lost
stability since it changes more than just a type of the attractor of the dynamic system. It is topology of
basins of attraction that changes as well, which specifies the way the trajectory behaves in the window of
periodicity, viz. within a range of values of the control parameters Δa = ac – at. Contrary to the widespread
simplified knowledge on dynamics of the models involved, the behavior of the trajectory for a ∈ [ac, at] is
not bounded by stable cyclic modes.

At the instant of moving to the window of periodicity, basins of attraction of the strange and regular
attractors cross and the trajectory of the dynamic system, through an interval of chaotic motion, tends to
the subset of the phase space consisting of cyclic points. We need to consider the mapping Rn + 1 = ψ3(Rn)
as an independent dynamic system. The mapping has three attractors within the range of values Δa of
existence of the window of periodicity, with the boundaries of their basins of attraction becoming fractal
by the definition given in [8]. Such structure of the boundaries results in the fact that the subset of the
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Fig. 1. Chaos in the model based on the Ricker formula.
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phase space, along which the trajectory moves, is characterized by the fractional topological dimension.
The so�called box�counting dimension

(3.1)

where Z(δ) is the minimum number of cells of the size δ necessary to cover the boundary of the basin of
attraction of the attractor [9], is frequently used to study subsets of the phase space with chaotic dynamics.
There are several algorithms for finding the dimension d using data from the time series. The calculated
dimension of (3.1) for chaotic attractors turned out to be a fractional value, which made it possible to treat
such attractors as fractal objects. The concept of strange attractor introduced by D. Ruelle and F. Takens
disproved the Landau�Hopf theory of turbulence, where chaotic motion was associated with the trajectory
moving along an infinite torus, i.e., the smooth manifold.

Further, as the parameter a increases, each stable point ψ3(R) experiences a period doubling bifurca�
tion cascade and moves to chaos. However, the domain of chaotic mode that follows the doublings of the
cycle of period 3 is represented by three disjoint bands in the phase space. What is different about the
behavior of the trajectory is that it gets into these bands strictly periodically. Then, the window of period�
icity “closes” for the value of the parameter ac when three chaotic bands are combined at the instant that
coincides with the intersection of the unstable cycle that emerges for the tangent bifurcation and chaotic
subsets. When unstable fixed points ψ3(R) get inside the chaotic bands, the dimensions of the compound
chaotic attractor increases dramatically. Aperiodic points of the trajectory immediately emerge in the
domains that separate chaotic bands, generating a single attractor that exists in such form till the next tan�
gent bifurcation associated with ψ4(R).

Thus, dynamics of functional iterations frequently used in simulation can involve complex nonlinear
effects that are not taken into account at the stage of designing computer models yet affect simulation
results.

4. DESIGNING THE MODEL FOR STUDYING STEPWISE CHANGES

The mathematical part of the theory of biological population recruitment required a qualitative exten�
sion through synthesis with ideas of other biological theories that developed in parallel. The conceptual
extension of knowledge implies that the applied mathematical apparatus is modified respectively.
Dynamic models based on the apparatus of discrete mappings frequently fail to adequately describe char�
acteristic changes of stages of the process since they are a simplified and approximate formalization of the
dependence that does not take into account possible conditions for abrupt metamorphoses of different
nature.

The need to study systems with critical stepwise changes in their development requires more advanced
and detailed type of models to be developed. Such systems are common in simulation of technological
processes, consequences of joint functioning of continuous plants and discrete controllers such as an oscil�
lating loop subject to a piecewise�constant action. A similar problem arises for simulation of the flying vehicle
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www.manaraa.com

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 50  No. 3  2011

UNCERTAINTY OF ASYMPTOTIC DYNAMICS 495

moving in the atmosphere and deals with the fact that the air resistance and velocity of sound depend on the
altitude, which means we need to provide for altitude ranges, where different dependences hold.

As applied to natural processes and as was shown in [10], the influence of metamorphoses in early
ontogenesis of different fish species specifies critical peculiarities of the dependence of the magnitude of
mature generation on the recovery conditions. A technique of applying discontinuous differential equa�
tions is developed for simulation problems of such processes. For special states attained in the space of
state variables, values of parameters in right�hand sides, the form of the right�hand side or the number of
equations can change. The algorithmic model uses predicates to describe events. The predicates single the
event out of all system states that changes the nature of process development. The way time is represented
in the computer simulation environment is the key peculiarity of this technique [11].

Hybrid time is implemented in the simulating algorithm based on numbered and ordered sequence of
frames, which makes it possible for the continuous time component to give its place to discrete samples.
Software implementation of hybrid model time is expressed by a set of sequentially placed segments with
a “time gap” between the end of the current interval and the beginning of the next interval, where the state
variables change

 

Here, Gap_pre is the time gap used to calculate the consistent initial conditions and check the predicate
at the left end of the interval of the next long�term behavior, Gap_post is a similar gap used to calculate new
initial conditions at the right end of the current interval ϕi; Ti is the time of transition actuation or the
point, at which the predicate of the event leading to behavior change becomes true.

Our model leverages the AnyLogic hybrid automaton formalism to implement the search of the con�
dition, under which the right�hand side changes. Biological peculiarities of sturgeon (the main object of
our study) imply three evolution stages in the model that are reasonable to be outlined by unit, distinct
morphological characters [12]. Transitions between these stages in the early ontogenesis of fish happen
once aggressive feeding begins and the tactile contact with the ground is lost. The V.V. Vasnetsov theory of
stage�by�stage fish development states that the transition between consecutive stages is fast, with the exist�
ence conditions for the organism changing dramatically [13]—this inevitably affects mortality factors,
which is critical to the problem involved.

We introduce a new model that takes into account critical stepwise changes in development of organ�
isms, with the state of the model characterized by the principal value N at the instant Т, and the recruit�
ment variable is R = N(T). The new dependence is the result of numerical solution of the equation with
structurally changing right�hand side

(4.1)

where α, α1, and α2 are the values of the successively changing coefficient of compensatory mortality, β is
the coefficient of decompensatory mortality, the decreasing function θ(S) introduced in the equation
reflects the Allee effect , τ is the duration of the earliest development stage subjected to strong

negative environmental influence, and ζ is a delay small as compared to the integration interval t ∈ [0, T].
The second equation of (4.1) gives the dynamics of size development of individuals, where g stands for the
available food reserve, ζ is the correction factor, and wk is interpreted as the organism development level
that, when achieved, changes the effect of some factors of compensatory and decompensatory mortality
included in the model. The initial conditions of the equations are N(0) = λS and w(0) = w0, where λ is the
mean fertility of the population and S is the magnitude of its spawning part.

Using the equation with a divergent argument to describe dynamics of the system moving to the third
stage of development of the simulated process is due to the common natural phenomenon: the system state
at the given instant depends on the processes that took place during a long interval preceding the current
instant. For instance, the state of technical frames depends on previous deformations while food available
for the current generation depends on the magnitude of previous generations of the population.
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5. PROPERTIES OF NONATTRACTING CHAOTIC SET FOR (4.1)

We studied hybrid model (4.1) to see that structural changes makes the dependence between two main
variables N(T) = f(S) cease to be described by a unimodal curve. The obtained dependence is character�
ized by the fact that Schwartz differential invariant (2.1) is not sign�constant since the sign of Sψ cannot
be constant everywhere when there are more than one point of inflexion, at which the curve changes from
convex to concave. The dependence gets a complex, wavelike form (Fig. 3) distinguished by the position
of the graph with respect to the bisectrix of the coordinate angle. The graph resulted from the numeric
study of model (4.1) crosses the bisectrix of the coordinate angle, the geometrical locus of stationary
points R*= ψ(R*), four times. To analyze stability of fixed points of the dynamic system implemented in
the simulation environment, we employed the property of the second iteration f  2(x). Whether the ine�
qualities f  2(x) > x for x < x* and f  2(x) < x for x > x* are met is the necessary and sufficient stability con�
dition for the fixed point x* of the one�dimensional mapping. We can leverage computer simulation to
obtain graphs of higher iterations f(f(…f(x)…)) of functions that are difficult to be studied analytically.

We analyzed the second iteration f 2(R) to see that, unlike the case of the third iteration ψ3(R) of the
Ricker function when the cycle of period 3 emerges, stable and unstable fixed points do not alternate. First
three non�trivial stationary points are unstable, making the trajectories leave their neighborhoods. The
dynamic system has two attractors, viz. the fourth singular point  and the trivial equilibrium (0, 0) with
their respective basins of attraction Ω1 and Ω2. This means that the simulated system can be in two stable
states, transition to one of which means irreversible degradation.

The fact that Ω1 and Ω2 do not form any continuous subspaces in the phase space is an even more inter�
esting specific feature of model (4.1). Although the unique singular repeller point Rr ∉ Ω1 ∪ Ω2 is the
boundary between basins of attraction in our model developed previously, this case gave us a simplified
idea of the properties of the simulated process, viz. it is a kind of mathematical idealization. Chaos is real�

ized in the basin Ω3 bounded by the fixed points  and , with aperiodic values of the trajectory points
emerging that are never repeated exactly and all approximate repetitions have finite duration. A chaotic
subset of the phase space is formed that do not exhibit the properties of attractor. The type of chaotic
behavior that takes place in the limited time is called chaotic transient. The number of values, for which
the points of the trajectory of the computer model Rj + 1 = ψ(Rj) for R0 ∈ Ω3 are in the chaotic subset Ω3,
i.e., the duration of the chaotic transient mode, significantly depends on the chosen initial conditions R0.

For smooth boundaries, when the initial conditions were set, the trajectory corresponded to Ω1 or Ω2

and a small change in the initial conditions did not make the phase trajectory leave for the alternative
attractor. The basins Ω1 and Ω2 are sectioned and have a complicated structure. The basin of attraction of

the attractor  is broken in Ω3 by the segments that belong to the basin of attraction of , and the
boundaries of basins of attraction are locally disconnected according to the existing classification of com�
plex boundaries of basins of attraction [14].
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When it leaves Ω3, the trajectory is sure to go towards one of two possible attractors (Fig. 4). Boundaries
of basins of attraction of the type described by the example of the developed model make it impossible to
predict what particular attractor of several existing ones will have the phase trajectory in the continuous
part of its basin of attraction given some initial state that corresponds to Ω3. The result may depend on
insignificant errors associated with the way numerical methods are implemented and numbers are repre�
sented in the computer. Hence, this model exhibits a fundamentally different, as compared to models with
chaotic attractor, type of sensitive dependence on initial conditions [15]. We define the described effect
arising in computer simulation as uncertainty with respect to asymptotic state. Such uncertainty makes
long�term prediction theoretically impossible.

Poincare was the first to mention sensitive dependence on initial conditions that disproved the classical
concept of determinism, with the phenomenon studied and evaluated not before researchers could use
computers in their work. It was the Royal McBee LGP�30 E. Lorenz used to analyze the model of atmo�
sphere now known as the Lorenz attractor. Although a whole number of other works deal with a way such
attractors are formed, in this work we show that a researcher operating with models, where only regular
attractors exist, can come across critical nonlinear effects. Such models do not allow a strange attractor to
be formed after bifurcation cascade, which is the most common and studied scenario of emergence of
deterministic chaos.

CONCLUSIONS

Model (4.1) takes into account dramatic changes in the development of the simulated process that are
associated with the rapid increase of the principal parameter observed after the trajectory leaves the cha�
otic subset for the continuous basin of attraction of the stable state . The behavior of the model
describes common natural phenomena, in particular sudden outbreaks in the number of some species.
Several thousand king crabs were introduced into the Barents Sea at the beginning of 1970s. Their number
stayed respectively small for more than thirty years until 1998 when it started increasing rapidly, from 3 to
60 million in 2008 [16].
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Outbreak in population numbers is not the only effect. Dramatic and sudden decrease in the number
of controlled population is much more feasible. This is what happened with sturgeon fishery. Researches
show that these populations are characterized by apparent nonlinear dependence R = f(S). After a period
of relative stabilization, Caspian sturgeon take was reduced rapidly and dramatically in 1988–1990 despite
the large�scale artificial recovery. Fishery experts did not expect the population size to run through a cer�
tain value that corresponded to the repeller point of (4.1), which resulted from exceeding the admissible
taking level. This triggered degradation since fishery was not stopped timely. At present, the populations that
kept yielding permanent takes during 1970s lost their fishery value, leading to the official fishery ban.

If they ignore all the peculiarities described according to the results of studying the whole class of mod�
els, researchers who construct a model for practical problems are destined to make a fortiori wrong con�
clusions. Underestimating nonlinear effects, they frequently concluded that theoretical basis of the com�
puter model was wrong. It becomes even more complex as the number of bifurcation parameters and the
dimension of the phase space grow. It would be too early to disprove theoretical concepts just because the
model on the computer display does not behave the way it was expected to. One needs to take a close look
at the mathematical apparatus both as functions, viz. finding out if they have extremums and asymptotes,
and nonlinear dynamic systems. Studying dynamic systems should go beyond stating that the trajectory is
attracted to one attractor, viz. an asymptotically stable stationary state, since nonlinear models can have
non�trivial boundaries of basins of attractions.

Analysis of the model may well lead to a conclusion that dynamics of the simulated process is unpre�
dictable, which is far from implying that the model is inadequate or the applied methods are not correct.
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